Logic and Discrete Structures -LDS

Course 4 — Lists
Dr. Eng. Catalin lapa
e- mail: catalin.iapa@cs.upt.ro
Facebook : Catalin lapa
cv: Catalin lapa

Types of data

Python provides 4 types of primitive data :
— Integer
— Float
— String
— Boolean

The primitive data types in Python are immutable. This
means that once they are created, their values cannot be
changed.

If you assign a new value to a variable of a primitive data
type, a new object is created with the updated value,
rather than modifying the original object.

Predefined types for data collections

In Python, there are several predefined types for
data collections.

These types allow us to store and manipulate
collections of data in a structured manner.

The four main predefined types for data collections
in Python are:

— List

— Tuple

— Set

— Dictionary

Lists - representation

We can represent a list as a diagram of linked
boxes:

—fa| F—{b[F{c [F—{d]\]

Above is a list with 4 elements:
[Ial) 1 bl’ | CI’ 1 dl]

Image : Robert M. Keller. Computer Science: Abstraction to Implementation, 2001

Adding an item to the list

—a[F—b] F—{c][F—]d
—a[F—b[F—fc][F—]d
—>e

—a| +—fb], c| +—{d

./

c

Image : Robert M. Keller. Computer Science: Abstraction to Implementation, 2001

Lists - representation

We can represent a list using item indexes.

item next
index l l

v

0 |a|3

|

3 |6 |3

3 |b|2

4

5 |d|-1

Image : Robert M. Keller. Computer Science: Abstraction to Implementation, 2001

Adding an item to the list

item next item next
inde>i l i inde)i l l

0 |a|3 0 |83

1 1 & 2

g €D » 5 €3

3 |b|2 3 |[b|l

4 4

5 |d|-1 5 |d|-]

Image : Robert M. Keller. Computer Science: Abstraction to Implementation, 2001

Lists

Lists are one of the types that represent collections of items.
A list it is a finite , ordered sequence.

* The lists are finite, but they can be of any length
* The order elements matter: [1; 3; 2] #[3;1; 2]

* Access to the list elements it is sequential (direct access to
the first only)

— different from vector/array : direct access (with index) to any
element

Lists

Two lists are equal if they have the same elements
in the same order .

A list may have no elements, and we call it an
empty list , or it may contain one or more elements.

We can decompose a list into:
— The head of the list - the first element
— The tail of the list - the other elements

List as a recursive type

Lists can be defined recursively

(an empty list
a list is < an element followed by a list lista
\ (head) (tail) ——

OO ... O

Attention : the tail of the list is a list , NOT the last element .

The elements of a list

A list can contain as elements any type of data .
[4, 6, 8, 10, 12]

»n”

[“string”, “of”, “ characters ”]

A list can have elements including other lists .
[[4,9],11, 2, 3, 4], [19, 20]]

A list can contain elements of different types .
8,'a’, [3,6,8]," word ", 9]

11

Lists in Python

A list is created using square brackets | |, like
this :

list1 = ["Timisoara”, "Arad"”, " Bucharest "]

list2 = [2022, 2023, 2024]

The length of a list

We can find the length of a list using the len()
function

listl = ["Timisoara", "Arad”, " Bucharest "]
print (len (list1))
#3

13

How to create a list

We can create a list in several ways:
list2 = [2022, 2023, 2024]

A list can also be created using the constructor
list() like this :

list2 = list ((2022, 2023)) # similar [2022, 2023]
list3 = list ("sir") # similar to list3 =['s’ "i ' 'r']

Accessing list elements

Elements can be accessed through index . Index of an
element can be positive [0], [1], [2] etc. or negative [-1],
[-2],[-3] etc.

listl =[" Timisoara ", " Arad ", " Bucharest "]

print (list1[0]) # Timisoara

print (list1[1]) # Arad

print (list1 [-1]) # Bucharest, the last element
print (listl [-2]) # Arad

print (list1 [-3]) # Timisoara

Accessing list elements

We can access multiple elements in a list by specifying the
index of the element at the beginning of the sequence
and the element at the end of the sequence . The result is
a new list containing the specified items.

listl = ["Timisoara", "Arad"”, " Bucharest ", " lasi "]

print (list1 [1:3])
will show ['Arad’, ' Bucharest ']

the new list will start from element 1 to element 3. It
will include the first element, but not the last

Accessing list elements

We can omit the start or end index.

If we omit the one at the beginning it will take over starting with
element O :

listl = ["Timisoara", "Arad", " Bucharest ", " lasi "]

print (list1 [:3])
it will display ['Timisoara ', 'Arad ', ' Bucharest ']

If we omit the one at the end, it will take up to the last element

print (list1 [2 :])
it will display [' Bucharest ', "lasi ']

Accessing list elements

We can also use negative indices :
listl = ["Timisoara"”, "Arad"”, " Bucharest ", " lasi "]

print (listl1 [-3 :-1])
will display ['Arad ', ' Bucharest ']

print (listl [: -1])
will display ['Timisoara ', 'Arad ', ' Bucharest ']

print (listl [-2 :])
will display [' Bucharest ', "lasi ']

Checking for the existence of an
element

We can check if an element is in a list using the in
statement :

listl = ["Timisoara”, "Arad", "Bucuresti"”, "lasi"]
elem = "Arad"”
if elem in list1:

print(" the searched item is in the list ")
else:

print(" the searched item is not in the list ")

19

Change an item in the list

We can change a list element by its index:

list1 = ["Timisoara”, "Arad"”, "Bucharest”, "lasi"]
listl [1] = "Craiova”

The new list will be:

['Timisoara’, 'Craiova’, 'Bucharest', 'lasi']

Adding an item to the list

We can add a new element to the list without
removing another element: we will use the
append() method . The item will be added to the
end of the list .

list1 = ["Timisoara”, "Arad”, " Bucharest "]
listl. append (" Resita ")

It is inserted in the last position. The new list:
[' Timisoara', 'Arad’, ' Bucharest ', ' Resita ']

21

Adding an item to the list

We can add a new element to the list at a
certain position, without removing another
element, using the insert() method :

listl = ["Timisoara"”, "Arad"”, " Bucharest "]
listl.insert (1, " Resita ")

It is inserted in position 1. New list will be:
[' Timisoara ', ' Resita ', 'Arad’, ' Bucharest ']

Adding an item to the list

Whether we use the insert() method or the
append() method , the size of the list will
increase by one element.

23

Adding items to another list

To add the elements of another list to the current
list we will use the extend() method . The elements
will be added to the end of the current list .

listl1=[3,4,5]
list2=[101, 102 110]
listl.extend (list2)
print (list1)

will display [3,4 ,5, 101, 102, 110]

24

Removing items from the list

To remove a certain element from the list we
will use the remove() method .

listl1=[1,2,3,4,5]
listl.remove (2)
print (list1)

will display [1,3,4,5]

25

Removing items from the list

remove() method will only remove the first
occurrence of the element in the list.

list1=[1,23,4,5 2]
listl.remove (2)
print (list1)

will display [1,3,4,5, 2]

26

Removing items from the list

We can remove an element by specifying its
index with the pop() method

list1=[1,2,3,4,5, 2]
listl.pop (2)
print (list1)

will display [1,2,4,5, 2]

27

Removing items from the list

If we do not specify the index within the pop()
method, the last element of the list will be
removed.

28

Removing items from the list

If we do not specify the index within the pop()
method, the last element of the list will be

removed.

listi1=[1,2,3,4,5]

listl.pop ()
print (list1)

will display [1,2, 3,4]

29

Removing items from the list

To delete an item from the list we can use de/

list1=[1,2,3,4,5]
del listl [O]
print (list1)

will display [2, 3, 4, 5]

We can also delete the entire list:
del list

Removing items from the list

If we want to remove all elements from a list we
use the clear() method

listl1=[1,2,3,4,5]
listl. clear ()
print (list1)

will display the empty list: []

Sorting a list

To sort the elements of a list we will use the sort()
method . This method implicitly sorts the items in the list
in ascending or lexicographical order.

numbers=[1,3,2,6,5, 4]
words =['one ’, "two ', 'three ']
numbers. sort ()

words. sort ()

print (numbers , words)

will display :
[1I 2/ 3/ 4/ 5/ 6]
["two |, "three ', "one ']

32

Sorting a list

To sort the elements of a list in descending order we will use
the sort() method with the argument reverse = True .

numbers=[1,3,2,6,5 4]

words =["'one’, "two ', "three ']
numbers. sort (reverse = True)

words. sort (reverse = True)
print (numbers , words)

will display :
[6,543,2,1]
['one’ "three ', "two]

33

Sorting a list

We can use specific criteria to sort a list using the key =
function argument . It will first apply the function to each
element of the list and then sort by the result of the function.

def function (x):
return abs(x -1 0)

listl=[1,2,10,11,29]
list1 . sort (key = function)

print (list1)

will display :
[10, 11, 2, 1, 29]

34

Reverse the order of a list

To reverse the order of the elements of a list we use
the reverse() method

numbers=[1,2 3,45 6]

numbers. reverse ()
print (numbers)

will display :
[6,5432,1]

35

Copying a list

To copy a list to another list we will use the copy()
method or the list() constructor

istl1=1[1,2,3,4,56]

ist2 = listl. copy ()
ist3 = list (list1)

If we use the assignment operator =, it will not copy
the contents of one list to another list. It will just be
a reference to the first list, and any changes to the

first list will be reflected if we use the new object.

Concatenation of two lists

Using the + operator for 2 lists we will
concatenate their contents into a new list .

listl =[”a", IIbII, ”C”]
list2 =[1, 2, 3]

list3 = list1 + list2
print (list3)

will display ['a’, 'b’, 'c’, 1, 2, 3]

37

Functions for lists: map()

We can apply a function to each element of a list
with the map() function .

map() function has 2 arguments, the first is a
function and the second is the list to which the
function applies.

new _list = map (function, list)

38

Functions for lists: map()

Example:
def square (x):
return x*x

num=[1, 2, 3, 4]
list1 = map (square, num)
print (list (list1))

will display:
[1,4,9,16]

Functions for lists: map()

We can also use the anonymous function in map() .

num = [1, 2, 3, 4]
list1 = map (lambda x: x * x, num)

We can also apply map() to several lists in parallel:

numl =[1, 2, 3]
num2=[4,5, 6]
result = map (lambda x, y: x +y, num1l, num2)

https://www.geeksforgeeks.org/python-map-function/ 40

Functions for lists: reduce()

reduce() function sequentially applies a given
function to the elements of a list.

It has 2 arguments and returns the result of the
sequential application of the function

result = reduce (function, list)

The function is defined in the functools module .

Functions for lists: reduce()

the reduce() function works :

* |n the first step, the function is applied to the first
2 elements in the list and the result is retained

* After which the function is applied with the result
obtained in the previous step and the next
element in the list and the result is retained

* The previous step is repeated until all items in the
list are covered and the final result is returned

42

Functions for lists: reduce()

Example of use:
import functools
list1=[1,3,5,6, 2]

print (" The sum of the elements of the listis : ")
print (functools.reduce (lambda a, b: a+b, list1))

print (" The maximum element is : ")
print (functools . reduce (lambda a, b: a if a > b else b, list1))

https://www.geeksforgeeks.org/reduce-in-python _ 43

Functions for lists: reduce()

Example of use:
import functools
listl1=[1,3,5,6, 2]
import functools
listl1=[1,3,5,6, 2]

print (functools . reduce (lambda a, b: a ifa < b else b, list1))

https://www.geeksforgeeks.org/reduce-in-python _

44

Functions for lists: filter()

The function filter(function, list) tests each
element of the list with the given function and
returns only the elements that satisfy the
condition in the function.

The function received as a parameter must
return True or False

The result will only contain the elements for
which the function returns True

Functions for lists: filter()

Example of use:
def function (letter) :
vowels =['a’, 'e’, "i ', ‘o', 'u']
if (letter in vowels):
return True
else :

return False
list1=['g), ‘e, ‘e, j, 'k, s, ', r’

list2 = filter (function, l/st1)
print (list (list2))

https://www.geeksforgeeks.org/filter-in-python _

Functions for lists: filter()

Example of use:
numbers =[0, 1, 2, 3,5, 8, 13]

odd = filter (lambda x: x % 2 != 0, numbers)
print (list (odd))

even = filter (lambda x: x % 2 == 0, numbers)
print (list (even))

It will display:
[1, 3,5, 13]
[0, 2, 8]

https://www.geeksforgeeks.org/filter-in-python _

47

Memory address of the elements

To get the memory address for an

item in a list we use the id() function. L
Example: 1nde>i l i
list1=[0,1,2,3,5,8, 13] 0 |a|3
print (id (list1[0])) 1
print (id (list1[1])) 7 |e |5

3 |b|2
will display: 4
2163888750800 5 |d]-1

2163888750832

Memory address of the elements

As a rule, the memory address of a byte

is expressed in base 16. To display the item next
address in base 16 we can use the hex() . . l l
function |
Example: NE
list1=[0,1,2 3,5 8 13]
print (hex (id (list1 [0]))) 1
print (hex (id (list1 [1]))) 7 |€|D

3 |b|2
will display: 4
0x227882c00d0 5 [d]-1

0x227882c00f0

Head and tail of the list (Head , Tail)

If we have a list and we want to extract the head
of the list and its tail we can write:

list1=[0 1,2, 3, 4, 5]
head , tail = list1[0], list1[1:]

head =0
#tail=[1, 2, 3, 4, 5]

Recursive functions — Create list

def create _list _recurse(start, end):
if start > end:
return []
return [start] + create_list_recurse(start + 1, end)

create _list _recurse(0, 9)
#[01 1/ 2/ 3/ 4/ 5/ 6/ 7/ 8/ 9]

create _list_recurse(3, 1) #edge case returns empty

#[]

https://stackoverflow.com/questions/62854078/how-to-create-a-recursive-function-to-create-a-list-of-values

Recursive functions — Number of

elements
Recursion: Tail recursion:
def length (list1): def length2(list1, no=0):
if listl ==[]: if (listl ==[]):
return O return no
return 1 + length(list1[1:]) return length2(listi[1:], 1 + no)

print(length ([0, 1, 2, 3, 4, 5])) print(length2 ([0, 1, 2, 3, 4, 5]))
#6 #6

Recursive Functions — Contains the
element

The recursive function that tells us if an element is
in a list or not:

def contains (x, list1):

if (listl ==][]):
return False
return x == list1[0] or contains (x, list1[1 :])

print (contains (4,[1,2,3]))
#False

53

To know

Lists are the simplest type of collection
- exist in many programming languages

Working with standard list traversal functions

- how to simply write "do this operation on
the whole list"

Operations that have functions as parameters
- allow us to specify the desired processing

54

Thank you!

55

Bibliography

 The content of the course is mainly based on the materials
of the past years from the LSD course, taught by Prof. Dr.
Marius Minea et al. Dr. Eng. Casandra Holotescu (
http://staff.cs.upt.ro/~marius/curs/Isd/index.html)

http://staff.cs.upt.ro/~marius/curs/lsd/index.html

